ER stress transcription factor Xbp1 suppresses intestinal tumorigenesis and directs intestinal stem cells
نویسندگان
چکیده
Unresolved endoplasmic reticulum (ER) stress in the epithelium can provoke intestinal inflammation. Hypomorphic variants of ER stress response mediators, such as X-box-binding protein 1 (XBP1), confer genetic risk for inflammatory bowel disease. We report here that hypomorphic Xbp1 function instructs a multilayered regenerative response in the intestinal epithelium. This is characterized by intestinal stem cell (ISC) expansion as shown by an inositol-requiring enzyme 1α (Ire1α)-mediated increase in Lgr5(+) and Olfm4(+) ISCs and a Stat3-dependent increase in the proliferative output of transit-amplifying cells. These consequences of hypomorphic Xbp1 function are associated with an increased propensity to develop colitis-associated and spontaneous adenomatous polyposis coli (APC)-related tumors of the intestinal epithelium, which in the latter case is shown to be dependent on Ire1α. This study reveals an unexpected role for Xbp1 in suppressing tumor formation through restraint of a pathway that involves an Ire1α- and Stat3-mediated regenerative response of the epithelium as a consequence of ER stress. As such, Xbp1 in the intestinal epithelium not only regulates local inflammation but at the same time also determines the propensity of the epithelium to develop tumors.
منابع مشابه
Intestinal epithelial cell endoplasmic reticulum stress promotes MULT1 up-regulation and NKG2D-mediated inflammation
Endoplasmic reticulum (ER) stress is commonly observed in intestinal epithelial cells (IECs) and can, if excessive, cause spontaneous intestinal inflammation as shown by mice with IEC-specific deletion of X-box-binding protein 1 (Xbp1), an unfolded protein response-related transcription factor. In this study, Xbp1 deletion in the epithelium (Xbp1ΔIEC ) is shown to cause increased expression of ...
متن کاملXBP1 Links ER Stress to Intestinal Inflammation and Confers Genetic Risk for Human Inflammatory Bowel Disease
Inflammatory bowel disease (IBD) has been attributed to aberrant mucosal immunity to the intestinal microbiota. The transcription factor XBP1, a key component of the endoplasmic reticulum (ER) stress response, is required for development and maintenance of secretory cells and linked to JNK activation. We hypothesized that a stressful environmental milieu in a rapidly proliferating tissue might ...
متن کاملDrosophila XBP1 Expression Reporter Marks Cells under Endoplasmic Reticulum Stress and with High Protein Secretory Load
Expression of genes in the endoplasmic reticulum (ER) beyond its protein folding capacity activates signaling pathways that are collectively referred to as the Unfolded Protein Response (UPR). A major branch of the UPR pathway is mediated by IRE1, an ER-tethered endonuclease. Upon ER stress-induced activation, IRE1 splices the mRNA of XBP1, thereby generating an active isoform of this transcrip...
متن کاملEndoplasmic reticulum stress and inflammation.
Endoplasmic reticulum (ER) stress due to the presence of misfolded or unfolded proteins in the ER invokes a fundamental biological response, termed the unfolded protein response (UPR). The UPR is orchestrated by three main proximal effectors, of which the IRE1/XBP1 pathway represents the evolutionarily most conserved one. Due to its high secretory burden, the intestinal epithelium is highly sus...
متن کاملDefective ATG16L1-mediated removal of IRE1α drives Crohn’s disease–like ileitis
ATG16L1T300A, a major risk polymorphism in Crohn's disease (CD), causes impaired autophagy, but it has remained unclear how this predisposes to CD. In this study, we report that mice with Atg16l1 deletion in intestinal epithelial cells (IECs) spontaneously develop transmural ileitis phenocopying ileal CD in an age-dependent manner, driven by the endoplasmic reticulum (ER) stress sensor IRE1α. I...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 210 شماره
صفحات -
تاریخ انتشار 2013